Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum.
نویسندگان
چکیده
Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both alpha-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of alpha-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either alpha-bungarotoxin insensitive, alpha-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while alpha-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels.
منابع مشابه
Activity-dependent regulation of substance P expression and topographic map maintenance by a cholinergic pathway.
We have assessed the role of activity in the adult frog visual system in modulating two aspects of neuronal plasticity: neurotransmitter expression and topographic map maintenance. Chronic treatment of one tectal lobe with the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione decreased the percentage of substance P-like immunoreactive (SP-IR) tectal cells in the untreated lobe ...
متن کاملNicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog.
Forty-two monoclonal antibodies (mAbs) generated against nicotinic acetylcholine receptors (AChRs) from electric organ were tested for their ability to cross-react in the optic tectum of the frog Rana pipiens. Twenty-eight of the mAbs tested (67%) bound to the optic neuropil of the tectum as revealed by immunoperoxidase cytochemistry. The pattern of peroxidase stain for cross-reacting mAbs corr...
متن کاملIsolation, localization, and cloning of a kainic acid binding protein from frog brain.
Excitatory amino acids (EAA) are major neurotransmitters in the vertebrate central nervous system. EAA receptors have been divided into three major subtypes on the basis of electrophysiological and ligand binding studies: N-methyl-D-aspartate, kainate, and quisqualate receptors. To understand their molecular properties, we undertook a project aimed at isolation and cloning of these receptor sub...
متن کاملNeurotrophin-3 and TrkC in the frog visual system: changes after axotomy.
Neurotrophins are potent regulators of the survival of different neuronal populations in the CNS. Little is known of the immunodistribution of neurotrophin-3 (NT-3) and tyrosine kinase C (TrkC) receptor in the frog visual system, which can successfully regenerate and recover vision after injury. In this study we show that both NT-3 and TrkC are present in the frog retina and tectum, and that th...
متن کاملResonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2003